Ads 468x60px

GRUPO 6

ALUMNOS DEL I.E.S.T.P JOSE PARDO

Featured Posts

sábado, 29 de junio de 2013

ECOSISTEMA

La Tierra como ecosistema El concepto de ecosistema es especialmente interesante para comprender el funcionamiento de la naturaleza y afecta, por tanto, a multitud de cuestiones ambientales. Hay que insistir en que la vida humana se desarrolla en estrecha relación con la naturaleza y que su funcionamiento nos afecta totalmente. El estudio de los ecosistemas, de su estructura y de su funcionamiento, nos muestra la profundidad de estas relaciones. Definición de ecosistema Los ecosistemas son sistemas complejos como un bosque, un río o un lago, formados por: • elementos físicos (el biotopo), por ejemplo, las rocas, minerales, etc. y • biológicos (la biocenosis o comunidad de organismos), es decir todos los seres vivos que habitan en ese lugar. El ecosistema es la unidad de trabajo, estudio e investigación de la Ecología. Es un sistema complejo en el que hay interacciones de los seres vivos entre sí y con el conjunto de factores no vivos que forman el ambiente: temperatura, sustancias químicas presentes, clima, características geológicas, etc. Ejemplos de ecosistemas.- La ecosfera es el mayor ecosistema y abarca todo el planeta. Reúne a todos los seres vivos en sus relaciones con el ambiente no vivo de toda la Tierra. Pero dentro de este gran sistema hay subsistemas que son ecosistemas más delimitados. Así, por ejemplo, el océano, un lago, un bosque, o incluso, un árbol, o una manzana que se esté pudriendo son sistemas que poseen patrones de funcionamiento similares típicos del ecosistema. Cada uno de ellos sería un ecosistema Funcionamiento del ecosistema El funcionamiento de todos los ecosistemas es parecido. En todos encontramos: • una fuente de energía que, fluyendo a través de los distintos componentes del ecosistema, mantiene la vida y moviliza el agua, los minerales y otros componentes físicos del ecosistema. La fuente primera y principal de energía es el sol. • un movimiento continuo de los materiales. Los diferentes elementos químicos pasan del suelo, el agua o el aire a los organismos y de unos seres vivos a otros, hasta que vuelven, cerrándose el ciclo, al suelo o al agua o al aire. En el ecosistema la materia se recicla -en un ciclo cerrado- y la energía pasa - fluyegenerando organización en el sistema. Estudio del ecosistema Al estudiar los ecosistemas interesa más el conocimiento de las relaciones entre los elementos, que el cómo son estos elementos. Los seres vivos concretos le interesan al ecólogo por la función que cumplen en el ecosistema, no en sí mismos como le pueden interesar al zoólogo o al botánico. Para el estudio del ecosistema es indiferente, en cierta forma, que el depredador sea un león o un tiburón. La función que cumplen en el flujo de energía y en el ciclo de los materiales son similares y es lo que interesa en ecología. Como sistema complejo que es, cualquier variación en un componente del sistema repercutirá en todos los demás componentes. Por eso son tan importantes la s relaciones que se establecen. Los ecosistemas se estudian analizando las relaciones alimentarias, los ciclos de la materia y los flujos de energía. a) Relaciones alimentarias.- La vida necesita un aporte continuo de energía que llega a la Tierra desde el Sol y pasa de unos organismos a otros a través de la cadena trófica1. Ejemplo de cadena trófica Las redes de alimentación (reunión de todas las cadenas tróficas) comienzan en las plantas (productores) que captan la energía luminosa con su actividad fotosintética y la convierten en energía química almacenada en moléculas orgánicas. Las plantas son devoradas por otros seres vivos que forman el nivel trófico de los consumidores primarios (herbívoros). La cadena alimentaria más corta estaría formada por los dos eslabones citados (ej.: elefantes alimentándose de la vegetación). Pero los herbívoros suelen ser presa, generalmente, de los carnívoros (depredadores) que son consumidores secundarios en el ecosistema. Ejemplos de cadenas alimentarias de tres eslabones sería, por ejemplo la que forma el hombre que se alimenta de la vaca y esta, a su vez, de hierba. Las cadenas alimentarias suelen tener, como mucho, cuatro o cinco eslabones - seis constituyen ya un caso excepcional-. Pero las cadenas alimentarias no acaban en el depredador cumbre (ej.: ballena), sino que como todo ser vivo muere, existen necrófagos, como algunos hongos o bacterias que se alimentan de los residuos muertos y detritos en general (organismos descomponedores o detritívoros). De esta forma se soluciona en la naturaleza el problema de los residuos. Los detritos (restos orgánicos de seres vivos) constituyen en muchas ocasiones el inicio de nuevas cadenas tróficas. Por ej., los animales de los fondos abisales se nutren de los detritos que van descendiendo de la superficie. Las diferentes cadenas alimentarias no están aisladas en el ecosistema sino que forman un entramado entre sí y se suele hablar de red trófica. b) Ciclos de la materia.- Los elementos químicos que forman los seres vivos (oxígeno, carbono, hidrógeno, nitrógeno, azufre y fósforo, etc.) van pasando de unos niveles tróficos a otros. Las plantas los recogen del suelo o de la atmósfera y los convierten en moléculas orgánicas (glúcidos, lípidos, proteínas y ácidos nucleicos). Los animales los toman de las plantas o de otros animales. Después los van devolviendo a la tierra, la atmósfera o las aguas por la respiración, las heces o la descomposición de los cadáveres, cuando mueren. De esta forma encontramos en todo ecosistema unos ciclos del oxígeno, el carbono, hidrógeno, nitrógeno, etc. cuyo estudio es esencial para conocer su funcionamiento. c) Flujo de energía El ecosistema se mantiene en funcionamiento gracias al flujo de energía que va pasando de un nivel al siguiente. La energía fluye a través de la cadena alimentaria sólo en una dirección: va siempre desde el sol, a través de los productores a los descomponedores. La energía entra en el ecosistema en forma de energía luminosa y sale en forma de energía calorífica que ya no puede reutilizarse para mantener otro ecosistema en funcionamiento. Por esto no es posible un ciclo de la energía similar al de los elementos químicos. Elementos del ecosistema Productores primarios. Los productores primarios son los organismos que hacen entrar la energía en los ecosistemas. Los principales productores primarios son las plantas verdes terrestres y acuáticas, incluidas las algas, y algunas bacterias. Forman el 99,9% en peso de los seres vivos de la biosfera. Fotosíntesis y respiración La fotosíntesis es el proceso por el que se capta la energía luminosa que procede del sol y se convierte en energía química. Con esta energía el CO2, el agua y los nitratos que las plantas absorben reaccionan sintetizando las moléculas de carbohidratos (glucosa, almidón, celulosa, etc.), lípidos (aceites, vitaminas, etc.), proteínas y ácidos nucleicos (ADN y ARN) que forman las estructuras vivas de la planta. Las plantas crecen y se desarrollan gracias a la fotosíntesis, pero respiran en los periodos en los que no pueden obtener energía por fotosíntesis porque no hay luz o porque tienen que mantener los estomas cerrados. En la respiración se oxidan las moléculas orgánicas con oxígeno del aire para obtener la energía necesaria para los procesos vitales. En este proceso se consume O2 y se desprende CO2 y agua, por lo que, en cierta forma, es lo contrario de la fotosíntesis que toma CO2 y agua desprendiendo O2. La producción primaria bruta de un ecosistema es la energía total fijada por fotosíntesis por las plantas. La producción primaria neta es la energía fijada por fotosíntesis menos la energía empleada en la respiración, es decir la producción primaria bruta menos la respiración. Factor limitante El factor limitante es el componente o la característica del ecosistema que impide que la producción sea mayor. El factor limitante suele ser, en los ecosistemas acuáticos, el N o el P, que so elementos químicos que las plantas necesitan. En los ecosistemas terrestres también suele ser el agua en bastantes ocasiones. Productores secundarios Los productores secundarios son todo el conjunto de animales y detritívoros que se alimentan de los organismos fotosintéticos. Los herbívoros se alimentan directamente de las plantas, pero los diferentes niveles de carnívoros y los detritívoros también reciben la energía indirectamente de las plantas, a través de la cadena trófica. La mayor parte de la energía absorbida se utiliza en el mantenimiento o se pierde a través de las heces. Sólo una pequeña parte se convierte en producción secundaria (aumento de peso del animal o nuevas crías). Sólo una fracción insignificante de la energía puesta en juego en la biosfera circula por las estructuras más complejas de la vida, las de los animales superiores. Detritívoros (Descomponedores) Dentro del grupo de los productores secundarios, además de los animales grandes y longevos, está el grupo de los detritívoros o descomponedores, formado fundamentalmente por los hongos y las bacterias. Son muy pequeños, están en todas partes, con poblaciones que se multiplican y se desvanecen con rapidez. Desde el punto de vista del aprovechamiento de la energía son despilfarradores y aprovechan poco la energía: su eficiencia es pequeña. Los descomponedores tienen gran importancia en la asimilación de los restos del resto de la red trófica (hojarasca que se pudre en el suelo, cadáveres, etc.). Son agentes necesarios para el retorno de los elementos, que si no fuera por ellos se irían quedando acumulados en cadáveres y restos orgánicos sin volver a las estructuras vivas. Gracias a su actividad se cierran los ciclos de los elementos. En los ecosistemas acuáticos abundan las bacterias. Los hongos son muy importantes en la biología del suelo. Ciclos de los elementos Elementos químicos en el ecosistema. Los seres vivos están formados por elementos químicos, fundamentalmente por oxígeno, hidrógeno, carbono y nitrógeno que, en conjunto, suponen más del 95% de peso de los seres vivos. El resto es fósforo, azufre, calcio, potasio, y un largo etcétera de elementos presentes en cantidades muy pequeñas, aunque algunos de ellos muy importantes para el metabolismo. Estos elementos también se encuentran en la naturaleza no viva, acumulados en depósitos. Así, en la atmósfera hay O2, N2 y CO2. En el suelo H2O, nitratos, fosfatos y otras sales. En las rocas fosfatos, carbonatos, etc. Transferencia cíclica de los elementos Algunos seres vivos son capaces de captar los elementos químicos de los depósitos inertes en los que se acumulan. Después van transfiriéndose en las cadenas tróficas de unos seres vivos a otros, siendo sometidos a procesos químicos que los van situando en distintas moléculas. Así, por ejemplo, el N es absorbido del suelo por las raíces de las plantas en forma de nitrato; en el metabolismo de las plantas pasa a formar parte de proteínas y ácidos nucleicos (químicamente hablando ha sufrido una reducción); los animales tienen el N en forma de proteínas y ácidos nucleicos, pero lo eliminan en forma de amoniaco, urea o ácido úrico en la orina. El ciclo lo cierran bacterias del suelo que oxidan el amoniaco a nitratos. Por otros procesos el N puede ser tomado del aire por algunas bacterias que lo acaban dejando en forma de nitratos o también puede ser convertido a N2 gas por otras bacterias que lo devuelven a la atmósfera. Los ciclos de los elementos mantienen una estrecha relación con el flujo de energía en el ecosistema, ya que la energía utilizable por los organismos es la que se encuentra en enlaces químicos uniendo los elementos para formar las moléculas. Ciclo del Carbono El carbono es elemento básico en la formación de las moléculas de carbohidratos, lípidos, proteínas y ácidos nucleicos, pues todas las moléculas orgánicas están formadas por cadenas de carbonos enlazados entre sí. La reserva fundamental de carbono, en moléculas de CO2 que los seres vivos puedan asimilar, es la atmósfera y la hidrosfera. Este gas está en la atmósfera en una concentración de más del 0,03% y cada año aproximadamente un 5% de estas reservas de CO2, se consumen en los procesos de fotosíntesis, es decir que todo el anhídrido carbónico se renueva en la atmósfera cada 20 años. La vuelta de CO2 a la atmósfera se hace cuando en la respiración los seres vivos oxidan los alimentos produciendo CO2. En el conjunto de la biosfera la mayor parte de la respiración la hacen las raíces de las plantas y los organismos del suelo y no, como podría parecer, los animales más visibles. Los seres vivos acuáticos toman el CO2 del agua. La solubilidad de este gas en el agua es muy superior a la de otros gases, como el O2 o el N2, porque reacciona con el agua formando ácido carbónico. En los ecosistemas marinos algunos organismos convierten parte del CO2 que toman en CaCO3 que necesitan para formar sus conchas, caparazones o masas rocosas en el caso de los arrecifes. Cuando estos organismos mueren sus caparazones se depositan en el fondo formando rocas sedimentarias calizas en el que el C queda retirado del ciclo durante miles y millones de años. Este C volverá lentamente al ciclo cuando se van disolviendo las rocas. El petróleo, carbón y la materia orgánica acumulados en el suelo son resultado de épocas en las que se ha devuelto menos CO2 a la atmósfera del que se tomaba. Así apareció el O2 en la atmósfera. Si hoy consumiéramos todos los combustibles fósiles almacenados, el O2 desaparecería de la atmósfera. Como veremos el ritmo creciente al que estamos devolviendo CO2 a la atmósfera, por la actividad humana, es motivo de preocupación respecto al nivel de infecto invernadero que puede estar provocando, con el cambio climático consiguiente. Ciclo del Oxígeno El oxígeno es el elemento químico más abundante en los seres vivos. Forma parte del agua y de todo tipo de moléculas orgánicas. Como molécula, en forma de O2, su presencia en la atmósfera se debe a la actividad fotosintética de primitivos organismos. Al principio debió ser una sustancia tóxica para la vida, por su gran poder oxidante. Todavía ahora, una atmósfera de oxígeno puro produce daños irreparables en las células. Pero el metabolismo celular se adaptó a usar la molécula de oxígeno como agente oxidante de los alimentos abriendo así una nueva vía de obtención de energía mucho más eficiente que la anaeróbica. La reserva fundamental de oxígeno utilizable por los seres vivos está en la atmósfera. Su ciclo está estrechamente vinculado al del carbono pues el proceso por el que el C es asimilado por las plantas (fotosíntesis), supone también devolución del oxígeno a la atmósfera, mientras que el proceso de respiración ocasiona el efecto contrario. Otra parte del ciclo natural del oxígeno que tiene un notable interés indirecto para los seres vivos de la superficie de la Tierra es su conversión en ozono. Las moléculas de O2, activadas por las radiaciones muy energéticas de onda corta, se rompen en átomos libres de oxígeno que reaccionan con otras moléculas de O2, formando O3 (ozono). Esta reacción es reversible, de forma que el ozono, absorbiendo radiaciones ultravioletas vuelve a convertirse en O2 Ciclo del Nitrógeno Los organismos emplean el nitrógeno en la síntesis de proteínas, ácidos nucleicos (ADN y ARN) y otras moléculas fundamentales del metabolismo Su reserva fundamental es la atmósfera, en donde se encuentra en forma de N2, pero esta molécula no puede ser utilizada directamente por la mayoría de los seres vivos (exceptuando algunas bacterias). Esas bacterias y algas cianofíceas que pueden usar el N2 del aire juegan un papel muy importante en el ciclo de este elemento al hacer la fijación del nitrógeno. De esta forma convierten el N2 en otras formas químicas (nitratos y amonio) asimilables por las plantas. A pesar de este ciclo, el N suele ser uno de los elementos que escasean y que es factor limitante de la productividad de muchos ecosistemas. Tradicionalmente se han abonado los suelos con nitratos para mejorar los rendimientos agrícolas. Durante muchos años se usaron productos naturales ricos en nitrógeno como el guano2 o el nitrato de Chile. Desde que se consiguió la síntesis artificial de amoniaco fue posible fabricar abonos nitrogenados que se emplean actualmente en grandes cantidades en la agricultura. Como veremos su mal uso produce, a veces, problemas de contaminación en las aguas: la eutrofización. Ciclo del Fósforo El fósforo es un componente esencial de los organismos Su reserva fundamental en la naturaleza es la corteza terrestre. Es el principal factor limitante en los ecosistemas acuáticos y en los lugares en los que las corrientes marinas suben del fondo, arrastrando fósforo del que se ha ido sedimentando, el plancton prolifera en la superficie. Al haber tanto alimento se multiplican los bancos de peces, formándose las grandes pesquerías del Gran Sol, costas occidentales de Africa y América del Sur y otras. Con los compuestos de fósforo que se recogen directamente de los grandes depósitos acumulados en algunos lugares de la tierra se abonan los terrenos de cultivo, a veces en cantidades desmesuradas, originándose problemas de eutrofización. Ciclo del Agua El agua es un importantísimo componente de los seres vivos y es factor limitante de la productividad de muchos ecosistemas terrestres. En la disponibilidad de agua en el ecosistema influyen factores que pueden pasar desapercibidos en un primer momento. Así, por ejemplo, en las zonas continentales que se encuentran alejadas del mar, las precipitaciones dependen, sobre todo, del agua que se evapora en el interior del mismo continente. Esto hace que en zonas de clima cálido se pueda producir fácilmente desertización si disminuye la cantidad de agua disponible para la evaporación, cuando se canalizan excesivamente los ríos o, en general, se aumenta la velocidad de salida del agua de la cuenca. Este fenómeno también tiene influencia en las zonas selváticas, cuando se talan los árboles, porque se pierde capacidad de evapotranspiración (los árboles con su transpiración envían una gran cantidad de agua a la atmósfera). En la mayoría de las zonas continentales el nivel de la producción primaria se encuentra limitado por las disponibilidades de agua. Sucesión en el ecosistema Es la continua serie de cambios que va sufriendo un ecosistema. Manifiesta la tendencia a su autoorganización que tiene todo ecosistema que es tan fuerte que acaba imponiéndose sobre los cambios fortuitos. Ejemplos de sucesión es lo que sucede en un tronco muerto en el que van sustituyéndose unos organismos a otros; o la colonización por multitud de organismos de cualquier objeto que queda sumergido en el mar; o las distintas fases por las que va pasando un campo que deja de ser cultivado; etc. Constantes en la sucesión. Hay unos patrones regulares en toda sucesión. Primero colonizan el lugar las especies oportunistas, de gran facilidad de dispersión y rápida multiplicación; después, poco a poco, van apareciendo especies de crecimiento más lento pero más resistentes y más organizadoras. Conforme la sucesión va avanzando aumenta la biomasa total y principalmente las porciones menos "vivas" (madera de los árboles, caparazones, etc.). También aumenta, aunque menos, la producción primaria y disminuye la relación entre la producción primaria y la biomasa total (es decir, se retarda la tasa de renovación del conjunto del ecosistema). El trayecto de la energía desde el lugar de producción primaria hasta el final de las cadenas alimentarias se alarga y se hace más lento y, sobre todo, más constante y regular. Por ejemplo, aumenta el número de niveles tróficos, o la longitud de los vasos de transporte en los árboles, etc. Aumenta la diversidad, originándose una estructura más complicada (redes tróficas mayores y más complicadas), y aumentan las relaciones de parasitismo, comensalismo, etc., entre especies. Tipos de especies En cualquier ecosistema encontramos poblaciones de todo tipo de especies. La ecología estudia la función que las distintas especies desempeñan en el ecosistema y los distintos tipos de relaciones que mantienen entre sí. Especies nativas e inmigrantes A las especies que naturalmente pertenecían al ecosistema se les llama nativas o autóctonas. Las especies inmigrantes son las que son introducidas deliberadamente o accidentalmente en un ecosistema. La actividad humana ha acelerado la introducción de nuevas especies en los ecosistemas. Algunas veces el resultado es beneficioso -por ejemplo, para luchar contra una plaga-, pero otras son muy perjudiciales, porque se convierten en plagas o eliminan a otras especies nativas. Así sucedió con la introducción del conejo en Australia o los gatos u otros mamíferos en muchas islas del Pacífico en las que han llevado a la extinción a varias especies de aves. Especies generalistas y especialistas Las especies generalistas, como el hombre, la rata, las moscas, etc. pueden vivir en muchos lugares diferentes, ingerir gran variedad de alimentos y toleran muy diferentes condiciones ambientales. Las especies especialistas sólo pueden vivir bajo condiciones alimenticias o ambientales muy concretas. Así, por ejemplo, el oso panda se alimenta de hojas de bambú. Principales ecosistemas Suelo El suelo es una parte fundamental de los ecosistemas terrestres. Contiene agua y elementos nutritivos que los seres vivos utilizan. En el se apoyan y nutren las plantas en su crecimiento y condiciona, por tanto, todo el desarrollo del ecosistema. Formación. El suelo se forma en un largo proceso en el que interviene el clima, los seres vivos y la roca más superficial de la litosfera. Este proceso es un sucesión ecológica en la que va madurando el ecosistema suelo. La roca es meteorizada por los agentes metereológicos (frío/calor, lluvia, oxidaciones, hidrataciones, etc.) y así la roca se va fragmentando. Los fragmentos de roca se entremezclan con restos orgánicos: heces, organismos muertos o en descomposición, fragmentos de vegetales, pequeños organismos que viven en el suelo, etc. Con el paso del tiempo todos estos materiales se van estratificando y terminan por formar lo que llamamos suelo. Siempre se forman suelos muy parecidos en todo lugar en el que las características de la roca y el clima sean similares. El clima influye más en el resultado final que el tipo de roca y, conforme va avanzando el proceso de formación y el suelo se hace más evolucionado, menos influencia tiene el material original que formaba la roca y más el clima en el que el suelo se forma. Biomas terrestres Desierto El desierto se desarrolla en regiones con menos de 200 mm de lluvia anual. Lo característico de estas zonas es: • la escasez de agua y las lluvias muy irregulares que, cuando caen, lo hacen torrencialmente. Además la evaporación es muy alta por lo que la humedad desaparece muy pronto. • la escasez de suelo que es arrastrado por la erosión del viento, favorecida por la falta de vegetación Son poco productivos (menos de 50 g de C por m2 y año) y su productividad depende proporcionalmente de la lluvia que cae. Algunos desiertos son cálidos, como el del Sahara, mientras que otros son fríos como el de Gobi. En algunos la lluvia es prácticamente inexistente, como en el de Atacama, en la cordillera de los Andes. Atacama está rodeado de altas montañas que bloquean la entrada de humedad desde el mar, porque se produce el efecto Foehn. Otro mecanismo climático que forma desiertos en zonas cercanas a las costas es el ascenso de corrientes marinas frías cerca de los bordes continentales occidentales de Africa y América del Sur. El agua fría baja la temperatura del aire y son lugares en donde el aire desciende y no sopla hacia tierra. En el mar serán frecuentes las nieblas, pero en la tierra cercana no lloverá. Tundra La tundra se encuentra junto a las zonas de nieves perpetuas. La dureza del clima no permite la existencia de árboles. Su suelo -permafrost- está helado permanentemente, excepto un breve deshielo superficial en los dos meses más calurosos. Las temperaturas medias oscilan entre - 15ºC y 5ºC y las precipitaciones son escasas: unos 300 mm al año. En el ecosistema de tundra los factores limitantes son la temperatura y la escasez de agua. La tundra ártica, en el hemisferio Norte, es la más extensa (unos 20 000 km2) y forma un cinturón que cruza América y Eurasia, inmediatamente al sur del casquete de hielos del Artico entre las nieves perpetuas y los bosques de coníferas.. Las llamadas tundras alpinas se sitúan en las altas montañas, por debajo de las zonas glaciares. En el hemisferio Sur no existe, prácticamente, tundra al ser un hemisferio ocupado en su mayor parte por el océano. Solo la Península Antártica corresponde a este tipo de bioma. Taiga La taiga es el bosque que se desarrolla al Sur de la tundra. En ella abundan las coníferas (Picea, abetos, alerces y pinos) que son árboles que soportan las condiciones de vida - relativamente frías y extremas- de esas latitudes y altitudes, mejor que los árboles caducifolios. Ocupa una franja de más de 1500 km de anchura a lo largo de todo el hemisferio Norte, a través de América del Norte, Europa y Asia. También hay parcelas más pequeñas de este tipo de bosque en las zonas montañosas. El ecosistema de la taiga está condicionado por dos factores: 1. Las bajas temperaturas durante la mayor parte del año. Se alcanzan temperaturas inferiores a - 40ºC en el invierno, y el periodo vegetativo, en el que las plantas pueden crecer, sólo dura unos tres o cuatro meses; 2. La escasez de agua. No llueve mucho -entre 250 y 500 mm anuales-, y además el agua permanece helada muchos meses, por lo que no está disponible para las plantas. Bosque templado Bosque templado de hoja caduca Se sitúa en zonas con climas más suaves que el bosque de coníferas. Se extiende al sur de la taiga en el hemisferio norte, en amplias extensiones de América y Eurasia. En el hemisferio Sur sólo está representado en estrechas franjas del Sur de América, Nueva Zelanda y Australia. También se encuentra en las zonas bajas de las regiones montañosas de latitudes cálidas. El clima en las zonas templadas es muy variable, con las cuatro estaciones del año bien marcadas y alternancia de lluvias, periodos secos, tormentas, etc. Las precipitaciones varían entre 500 y 1000 mm al año. Los suelos son ricos porque la meteorización es alta y la actividad biológica también. Bosque mediterráneo Lo encontramos en las regiones de clima mediterráneo con veranos muy calurosos e inviernos templados, en las que la lluvia es de alrededor de 500 mm anuales y cae con gran irregularidad y torrencialmente. Es típico de toda la franja que rodea al Mediterráneo y de algunos lugares de California y África del Sur. En la Península Ibérica ocupa amplias áreas, a veces mezclándose con el bosque caducifolio. El ecosistema de bosque mediterráneo es muy sensible a la desertización si se destruye su cubierta vegetal. Las lluvias torrenciales arrastran el suelo con facilidad y se erosiona con gran rapidez. Un caso especial de bosque mediterráneo es el de la dehesa, que es un ecosistema único, típico de extensas zonas de la península Ibérica. La dehesa es un bosque mediterráneo modificado por la acción humana que logra un equilibrio ideal entre la explotación de recursos: madera, ganadería, etc. y el ser rico en biodiversidad y un magnífico lugar de reposo y alimentación de las aves migratorias. Praderas, estepas y sabanas Praderas Las praderas se desarrollan en zonas con precipitaciones entre los 250 y 600 mm anuales.. Es decir entre las de desiertos y las de bosques. Estas cifras pueden variar dependiendo de la temperatura y de la capacidad del suelo para mantener el agua y en las zonas tropicales encontramos praderas en lugares que tienen hasta 1200 mm de precipitación anual, porque caen sólo en una estación, y el resto del año no hay humedad suficiente para mantener el arbolado. El nombre de estepa se suele reservar a las praderas propias de regiones templadas o frías en las que las temperaturas son muy extremas y las lluvias escasas y mal repartidas en el tiempo. Selva El bosque tropical: la selva. En las zonas tropicales y ecuatoriales encontramos distintos tipos de bosques porque aunque todas las regiones cercanas al ecuador tienen en común el ser calurosas, hay grandes diferencias de regímenes de lluvias de unas a otras por lo que se forman bosques muy diferentes La pluviselva o bosque tropical húmedo es típica de lugares con precipitación abundante y está formada por plantas de hoja perenne, ancha. La selva amazónica es el representante más extenso de este tipo de bioma, aunque se encuentra también en Africa y Asia. Es un ecosistema con una gran riqueza y variedad de especies y de gran interés porque de esta gran biodiversidad se pueden obtener muchos recursos: alimentos, medicinas, sustancias de interés industrial, etc. El suelo de la selva es sorprendentemente débil y pobre en comparación con la riqueza de vida que soporta. La explicación es que la mayor parte de los nutrientes se encuentran en los seres vivos y no en el suelo. Cuando este ecosistema es destruido, por la tala o los incendios, su recuperación es imposible o muy difícil, porque el suelo desnudo se hace costroso y duro con gran rapidez proceso de laterización3. Por otra parte, al ser un suelo tan pobre, no es apto para la agricultura, porque en tres o cuatro cosechas pierde sus nutrientes. Vegetación El bosque tropical espinoso o seco crece en zonas tropicales con poca pluviosidad (unos 400 mm). Está formado por plantas con muchas espinas que pierden la hoja en la estación seca y que se disponen en grupos rodeados por zonas carentes de arbolado. El manglar es típico de los estuarios de los grandes ríos y de zonas costeras. La especie vegetal característica de este ecosistema es el mangle, un árbol muy singular que crece sobre el agua. Sus largas raíces se hunden en el fondo de arenas y limos y sostienen a la planta por encima del agua. Es un ecosistema de mucho interés para el mantenimiento de la variedad de poblaciones de peces, porque muchas especies hacen sus puestas entre las raíces de los mangles y ahí crecen los alevines. Océanos y mares Los océanos ocupan el 70% de la superficie terrestre y contienen una gran variedad de organismos. En sus aguas se pueden encontrar representantes de prácticamente todas las formas de vida. Los seres que viven en el mar se han adaptado a condiciones físicas muy variadas (olas, mareas, corrientes, salinidad, temperatura, presión, iluminación, gases disueltos, etc.) y han desarrollado sistemas fisiológicos, de sujeción, de flotación, etc. muy variados. Sus cadenas tróficas empiezan con organismos fotosintéticos y terminan con grandes ballenas, peces, calamares gigantes, etc. Entre los organismos fotosintéticos (productores primarios) hay algas macroscópicas que pueden alcanzar tamaños de varias decenas de metros, pero la mayor parte de la producción primaria la realizan algas microscópicas -fitoplancton- que viven en los metros más superficiales de la superficie de las aguas, hasta donde entra la luz. El factor que limita la producción de fitoplancton en una zona oceánica suele ser el ión fosfato. Por eso en aquellos lugares en los que corrientes marinas ascendentes suben sales de fósforo desde los sedimentos del fondo oceánico a la superficie, el fitoplancton prolifera y, a partir de él, todo el resto de organismos de la cadena trófica se multiplican. El fitoplancton alimenta al zooplancton y los dos nutren a un amplio grupo de animales filtradores. Muchos animales tan distintos como las grandes ballenas, los moluscos bivalvos (almejas, mejillones, etc.), y gran número de peces, se alimentan de los organismos microscópicos que recogen filtrando grandes cantidades de agua. Los animales que se encuentran en el vértice de la cadena trófica, como tiburones, atunes, delfines, cachalotes, etc. se alimentan de los organismos más pequeños. Los residuos orgánicos de los animales que viven cerca de la superficie se hunden hacia los fondos oceánicos y allí son el origen de la cadena trófica que permite vivir a los organismos que ocupan esos lugares. Estuarios, deltas y marismas Se denominan estuarios (del latín aestus: marea) las masas de agua semiencerradas (desembocaduras de ríos, bahía costera, etc.) en las que la salinidad es intermedia y variable y se deja notar fuertemente la influencia de las mareas. Los deltas son desembocaduras de ríos en las que se van depositando los sedimentos arrastrados por la corriente. Son una forma de estuario y en ellos abundan las marismas. Las marismas son amplias extensiones de tierras bajas que sufren frecuentes inundaciones del agua del mar. Estos ecosistemas están entre las zonas naturales más fértiles del mundo. Ríos Los ríos son componentes esenciales del paisaje continental. Su trabajo erosivo moldea el relieve, forma valles, corta cañones y deposita materiales en sus tramos bajos originando amplias llanuras aluviales. Para la vida en el medio terrestre son esenciales. Llevan agua y nutrientes a plantas y animales y transportan a los organismos y a sus estructuras reproductoras. Son muy usados por el hombre para suministro de agua, deposición de residuos, producción pesquera, etc. Desde el punto de vista ecológico es totalmente diferente el funcionamiento de los tramos alto, medio y bajo: En el curso alto el agua lleva pocos nutrientes pues no ha tenido tiempo de disolver o arrastrar minerales ni otras moléculas. El agua está bien oxigenada pues es fría y está agitada. Debido a la fuerte corriente no se pude desarrollar el fitoplancton y hay poca fotosíntesis: el ecosistema es heterotrofo (más respiración que producción) y los organismos obtienen la energía de los nutrientes que afluyen desde la cuenca, arrastrados por las aguas de lluvia. Esta es la zona del río apta para los salmónidos (trucha y salmón) que necesitan aguas bien oxigenadas. También son frecuentes los cangrejos, tritones, desmán de los Pirineos, martín pescador, mirlo acuático, etc. En el curso medio el lecho es más amplio y menos abrupto, las corrientes tienen menos fuerza y crecen plantas que se sujetan al lecho del río. El río es más autotrofo (producción/respiración mayor que 1 frecuentemente). La diversidad de especies suele ser máxima. Es el lugar de los barbos, nutrias, ranas, etc. En el curso bajo las corrientes son lentas y las aguas fangosas y al haber menos luz se hace menos fotosíntesis, por lo que el río de nuevo es heterotrofo y hay poca variedad de especies en la mayoría de los niveles tróficos. Los peces más frecuentes son tencas, percas, lucios, anguilas, etc. Los ríos son ecosistemas bien adaptados para el tratamiento de residuos: "alcantarillas gratuitas", porque tienen gran poder de regeneración de las aguas, pero han sido muy alterados por el hombre, a veces hasta destruir la vida casi totalmente en muchos tramos de ellos. Es muy difícil hallar un río auténticamente natural. Lagos y zonas húmedas Lagos y lagunas. Son sistemas jóvenes, a escala geológica. Las lagunas y la mayor parte de los lagos, permanecen desde pocas semanas o meses, -las estacionales-, a varios cientos de años, las más duraderas. Con el paso del tiempo acaban llenándose de sedimentos y colmatándose. Por este motivo la diversidad de especies es baja pues, aunque por su aislamiento debía ser alta, su corta duración no da tiempo a la aparición de nuevas especies. Una notable excepción es el Baikal, que es antiguo, y tiene muchas especies propias. Muchos lagos tienen en la actualidad importantes problemas de la eutrofización artificial. Les llegan muchos aportes de nutrientes procedentes de las actividades humanas, lo que origina un gran crecimiento de algas y de muchos organismos heterotróficos que hacen desaparecer el oxígeno, generándose procesos de anaerobiosis, y, por tanto, olor desagradable, desaparición de las truchas, etc. Embalses y lagos artificiales. El hombre ha dominado los ríos desde tiempo inmemorial construyendo presas. Los primeros embalses fueron construidos en Mesopotomia hace miles de años. En España hay algunos todavía en uso construidos por los romanos. En la actualidad regulan una cuarta parte del caudal total de los ríos de la Tierra. Se usan para obtener energía, para irrigar, para regular caudales, para beber, para refrigerar plantas eléctricas, térmicas o nucleares, para deporte y recreo, etc. También presentan algunas ventajas ecológicas. Por ejemplo, sustituyen a muchos humedales desaparecidos en las rutas de emigración de las aves, o mejoran la calidad del agua emitida por el embalse porque muchas sustancias se han quedado en los sedimentos. Sin embargo, en muchas ocasiones sepultan bajo las aguas tierras fértiles y alteran la forma de vida de poblaciones enteras. Causan problemas a los peces migratorios, a veces insuperables, por ejemplo, al salmón que tiene que ascender por el cauce del río para desovar en el tramo alto. También los embalses grandes situados en los tramos medios del río provocan importante disminución de la diversidad biológica. Otro factor que hay que tener en cuenta a la hora de decidir su construcción es que se van colmatando (llenando de sedimentos que arrastra el río) y envejecen y desaparecen en unos 60 a 100 años. En la actualidad uno de los problemas principales de muchos embalses es la eutrofización de sus aguas. Zonas húmedas, ciénagas y pantanos. A las zonas húmedas se les puede aplicar gran parte de lo expuesto para los estuarios. Son muy fértiles, con una gran productividad primaria e imprescindibles para la supervivencia de muchas especies.. Las fluctuaciones de agua por mareas o fuertes lluvias y los incendios estacionales las hacen más fértiles, porque liberan nutrientes solubles. Si no hay estas fluctuaciones se van acumulando sedimentos y turba que facilitan la invasión por la vegetación terrestre y el humedal desaparece. Tienen, también, un especial interés porque mantienen a los acuíferos que hay en su cercanía y los van rellenando de agua. 1 Trófico Del griego "tropho" que significa alimento. 2 Guano Materia formada por la acumulación de excrementos de las aves marinas en las costas de Perú y norte de Chile. Se emplea como abono por su riqueza en materia orgánica y en compuestos nitrogenados. 3 Lateritas. Se puede considerar como el suelo tropical típico, aunque no es propiamente el que tiene el bosque selvático, sino el que queda al talar la selva. Con la abundancia de lluvia en estas zonas el suelo es lavado muy intensamente y, al final, sólo queda una mezcla de óxidos e hidróxidos de aluminio, hierro, manganeso y otros metales. Contiene muy pocos elementos nutritivos porque su capa A es muy pequeña y es, por tanto, un suelo muy pobre para los cultivos.